Marknadens största urval
Snabb leverans

Towards Integrative Machine Learning and Knowledge Extraction

- BIRS Workshop, Banff, AB, Canada, July 24-26, 2015, Revised Selected Papers

Om Towards Integrative Machine Learning and Knowledge Extraction

The BIRS Workshop “Advances in Interactive Knowledge Discovery and Data Mining in Complex and Big Data Sets” (15w2181), held in July 2015 in Banff, Canada, was dedicated to stimulating a cross-domain integrative machine-learning approach and appraisal of “hot topics” toward tackling the grand challenge of reaching a level of useful and useable computational intelligence with a focus on real-world problems, such as in the health domain. This encompasses learning from prior data, extracting and discovering knowledge, generalizing the results, fighting the curse of dimensionality, and ultimately disentangling the underlying explanatory factors in complex data, i.e., to make sense of data within the context of the application domain.  The workshop aimed to contribute advancements in promising novel areas such as at the intersection of machine learning and topological data analysis. History has shown that most often the overlapping areas at intersections of seemingly disparate fields are key for the stimulation of new insights and further advances. This is particularly true for the extremely broad field of machine learning.

Visa mer
  • Språk:
  • Engelska
  • ISBN:
  • 9783319697741
  • Format:
  • Häftad
  • Sidor:
  • 207
  • Utgiven:
  • 29. oktober 2017
  • Utgåva:
  • 12017
  • Mått:
  • 155x235x0 mm.
  • Vikt:
  • 454 g.
  Fri leverans
Leveranstid: 2-4 veckor
Förväntad leverans: 9. oktober 2025

Beskrivning av Towards Integrative Machine Learning and Knowledge Extraction

The BIRS Workshop “Advances in Interactive Knowledge Discovery and Data Mining in Complex and Big Data Sets” (15w2181), held in July 2015 in Banff, Canada, was dedicated to stimulating a cross-domain integrative machine-learning approach and appraisal of “hot topics” toward tackling the grand challenge of reaching a level of useful and useable computational intelligence with a focus on real-world problems, such as in the health domain. This encompasses learning from prior data, extracting and discovering knowledge, generalizing the results, fighting the curse of dimensionality, and ultimately disentangling the underlying explanatory factors in complex data, i.e., to make sense of data within the context of the application domain. 
The workshop aimed to contribute advancements in promising novel areas such as at the intersection of machine learning and topological data analysis. History has shown that most often the overlapping areas at intersections of seemingly disparate fields are key for the stimulation of new insights and further advances. This is particularly true for the extremely broad field of machine learning.

Användarnas betyg av Towards Integrative Machine Learning and Knowledge Extraction



Hitta liknande böcker
Boken Towards Integrative Machine Learning and Knowledge Extraction finns i följande kategorier:

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.