Marknadens största urval
Snabb leverans

Statistical Inference Based on Kernel Distribution Function Estimators

Om Statistical Inference Based on Kernel Distribution Function Estimators

This book presents a study of statistical inferences based on the kernel-type estimators of distribution functions. The inferences involve matters such as quantile estimation, nonparametric tests, and mean residual life expectation, to name just some. Convergence rates for the kernel estimators of density functions are slower than ordinary parametric estimators, which have root-n consistency. If the appropriate kernel function is used, the kernel estimators of the distribution functions recover the root-n consistency, and the inferences based on kernel distribution estimators have root-n consistency. Further, the kernel-type estimator produces smooth estimation results. The estimators based on the empirical distribution function have discrete distribution, and the normal approximation cannot be improved¿that is, the validity of the Edgeworth expansion cannot be proved. If the support of the population density function is bounded, there is a boundary problem, namely the estimator does not have consistency near the boundary. The book also contains a study of the mean squared errors of the estimators and the Edgeworth expansion for quantile estimators.

Visa mer
  • Språk:
  • Engelska
  • ISBN:
  • 9789819918614
  • Format:
  • Häftad
  • Sidor:
  • 104
  • Utgiven:
  • 1. juni 2023
  • Utgåva:
  • 23001
  • Mått:
  • 155x7x235 mm.
  • Vikt:
  • 172 g.
  Fri leverans
Leveranstid: 2-4 veckor
Förväntad leverans: 16. december 2024

Beskrivning av Statistical Inference Based on Kernel Distribution Function Estimators

This book presents a study of statistical inferences based on the kernel-type estimators of distribution functions. The inferences involve matters such as quantile estimation, nonparametric tests, and mean residual life expectation, to name just some. Convergence rates for the kernel estimators of density functions are slower than ordinary parametric estimators, which have root-n consistency. If the appropriate kernel function is used, the kernel estimators of the distribution functions recover the root-n consistency, and the inferences based on kernel distribution estimators have root-n consistency. Further, the kernel-type estimator produces smooth estimation results. The estimators based on the empirical distribution function have discrete distribution, and the normal approximation cannot be improved¿that is, the validity of the Edgeworth expansion cannot be proved. If the support of the population density function is bounded, there is a boundary problem, namely the estimator does not have consistency near the boundary. The book also contains a study of the mean squared errors of the estimators and the Edgeworth expansion for quantile estimators.

Användarnas betyg av Statistical Inference Based on Kernel Distribution Function Estimators



Hitta liknande böcker
Boken Statistical Inference Based on Kernel Distribution Function Estimators finns i följande kategorier:

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.