Marknadens största urval
Snabb leverans

Optimized feature selection for enhancing lung cancer prediction using machine learning techniques

Om Optimized feature selection for enhancing lung cancer prediction using machine learning techniques

Lung cancer is a major cause of cancer-related deaths worldwide. Machine learning techniques have shown promising results in the early detection and prediction of lung cancer. However, high-dimensional data, such as gene expression profiles, can introduce noise and decrease the classification accuracy of machine learning models. Feature selection techniques can alleviate this issue by identifying the most relevant and informative features, leading to better model performance. Optimized feature selection techniques can enhance the prediction accuracy of lung cancer using machine learning algorithms. Support vector machines, random forest, and artificial neural networks are commonly used algorithms for lung cancer prediction. By optimizing feature selection, these models can be trained with the most informative features, reducing overfitting and improving classification accuracy. Cross-validation techniques can also be used to evaluate the performance of feature selection and machine learning algorithms. The integration of optimized feature selection with machine learning techniques can provide an accurate and reliable lung cancer prediction model, which has the potential to improve early detection and precision medicine for lung cancer patients. Overall, optimized feature selection for enhancing lung cancer prediction using machine learning techniques is a promising approach to improving patient outcomes and reducing the global burden of lung cancer.

Visa mer
  • Språk:
  • Engelska
  • ISBN:
  • 9782572444642
  • Format:
  • Häftad
  • Sidor:
  • 132
  • Utgiven:
  • 25. februari 2023
  • Mått:
  • 152x8x229 mm.
  • Vikt:
  • 203 g.
  Fri leverans
Leveranstid: 2-4 veckor
Förväntad leverans: 18. december 2024
Förlängd ångerrätt till 31. januari 2025

Beskrivning av Optimized feature selection for enhancing lung cancer prediction using machine learning techniques

Lung cancer is a major cause of cancer-related deaths worldwide. Machine learning techniques have shown promising results in the early detection and prediction of lung cancer. However, high-dimensional data, such as gene expression profiles, can introduce noise and decrease the classification accuracy of machine learning models. Feature selection techniques can alleviate this issue by identifying the most relevant and informative features, leading to better model performance.
Optimized feature selection techniques can enhance the prediction accuracy of lung cancer using machine learning algorithms. Support vector machines, random forest, and artificial neural networks are commonly used algorithms for lung cancer prediction. By optimizing feature selection, these models can be trained with the most informative features, reducing overfitting and improving classification accuracy.
Cross-validation techniques can also be used to evaluate the performance of feature selection and machine learning algorithms. The integration of optimized feature selection with machine learning techniques can provide an accurate and reliable lung cancer prediction model, which has the potential to improve early detection and precision medicine for lung cancer patients.
Overall, optimized feature selection for enhancing lung cancer prediction using machine learning techniques is a promising approach to improving patient outcomes and reducing the global burden of lung cancer.

Användarnas betyg av Optimized feature selection for enhancing lung cancer prediction using machine learning techniques



Hitta liknande böcker
Boken Optimized feature selection for enhancing lung cancer prediction using machine learning techniques finns i följande kategorier:

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.