Marknadens största urval
Snabb leverans

Learning-based Visual Compression

Om Learning-based Visual Compression

In recent years, the demand for visual media has been growing exponentially. Among the large amount of visual traffic over the Internet, high-resolution visual content constitutes an increasingly large percentage. With such a rapid growth of digital visual media traffic, there is a growing need for image/video compression approaches that can achieve much higher compression ratios than the ones obtained using existing conventional image/video compression methods, while maintaining a high visual quality. Visual compression is an application of data compression to lower the storage and/or transmission requirements for digital images and videos. Due to the rapid growth in visual data transmission demand, more efficient compression algorithms are needed. Considering that deep learning techniques have successfully revolutionized many visual tasks, learning-based compression algorithms have been explored over the years and have been shown to be able to outperform many conventional compression methods. This monograph provides a review of various visual compression algorithms, both end-to-end learning-based image compression approaches and hybrid image compression approaches. Some learning-based video compression methods are also discussed. In addition to describing a wide range of learning-based image compression approaches that have been developed in recent years, the survey describes widely used datasets, and discusses potential research directions.

Visa mer
  • Språk:
  • Engelska
  • ISBN:
  • 9781638281122
  • Format:
  • Häftad
  • Sidor:
  • 124
  • Utgiven:
  • 9. januari 2023
  • Mått:
  • 156x7x234 mm.
  • Vikt:
  • 202 g.
  Fri leverans
Leveranstid: 2-4 veckor
Förväntad leverans: 27. december 2024
Förlängd ångerrätt till 31. januari 2025

Beskrivning av Learning-based Visual Compression

In recent years, the demand for visual media has been growing exponentially. Among the large amount of visual traffic over the Internet, high-resolution visual content constitutes an increasingly large percentage. With such a rapid growth of digital visual media traffic, there is a growing need for image/video compression approaches that can achieve much higher compression ratios than the ones obtained using existing conventional image/video compression methods, while maintaining a high visual quality. Visual compression is an application of data compression to lower the storage and/or transmission requirements for digital images and videos. Due to the rapid growth in visual data transmission demand, more efficient compression algorithms are needed. Considering that deep learning techniques have successfully revolutionized many visual tasks, learning-based compression algorithms have been explored over the years and have been shown to be able to outperform many conventional compression methods. This monograph provides a review of various visual compression algorithms, both end-to-end learning-based image compression approaches and hybrid image compression approaches. Some learning-based video compression methods are also discussed. In addition to describing a wide range of learning-based image compression approaches that have been developed in recent years, the survey describes widely used datasets, and discusses potential research directions.

Användarnas betyg av Learning-based Visual Compression



Hitta liknande böcker
Boken Learning-based Visual Compression finns i följande kategorier:

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.