Marknadens största urval
Snabb leverans
Om Blossoming Development of Splines

In this lecture, we study Bézier and B-spline curves and surfaces, mathematical representations for free-form curves and surfaces that are common in CAD systems and are used to design aircraft and automobiles, as well as in modeling packages used by the computer animation industry. Bézier/B-splines represent polynomials and piecewise polynomials in a geometric manner using sets of control points that define the shape of the surface. The primary analysis tool used in this lecture is blossoming, which gives an elegant labeling of the control points that allows us to analyze their properties geometrically. Blossoming is used to explore both Bézier and B-spline curves, and in particular to investigate continuity properties, change of basis algorithms, forward differencing, B-spline knot multiplicity, and knot insertion algorithms. We also look at triangle diagrams (which are closely related to blossoming), direct manipulation of B-spline curves, NURBS curves, and triangular and tensor product surfaces.

Visa mer
  • Språk:
  • Engelska
  • ISBN:
  • 9783031795152
  • Format:
  • Häftad
  • Sidor:
  • 108
  • Utgiven:
  • 31. december 2007
  • Mått:
  • 191x7x235 mm.
  • Vikt:
  • 219 g.
  Fri leverans
Leveranstid: 2-4 veckor
Förväntad leverans: 5. augusti 2025

Beskrivning av Blossoming Development of Splines

In this lecture, we study Bézier and B-spline curves and surfaces, mathematical representations for free-form curves and surfaces that are common in CAD systems and are used to design aircraft and automobiles, as well as in modeling packages used by the computer animation industry. Bézier/B-splines represent polynomials and piecewise polynomials in a geometric manner using sets of control points that define the shape of the surface. The primary analysis tool used in this lecture is blossoming, which gives an elegant labeling of the control points that allows us to analyze their properties geometrically. Blossoming is used to explore both Bézier and B-spline curves, and in particular to investigate continuity properties, change of basis algorithms, forward differencing, B-spline knot multiplicity, and knot insertion algorithms. We also look at triangle diagrams (which are closely related to blossoming), direct manipulation of B-spline curves, NURBS curves, and triangular and tensor product surfaces.

Användarnas betyg av Blossoming Development of Splines



Hitta liknande böcker
Boken Blossoming Development of Splines finns i följande kategorier:

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.