Marknadens största urval
Snabb leverans

Böcker av Management Ghatak

Filter
Filter
Sortera efterSortera Populära
  • av Kamakhya Prasad (Inst Of Engineering & Management Ghatak
    2 325,-

    In recent years there has been considerable interest in studying the DENSITY-OF-STATES (DOS) functions and Related Applications in Quantized Structures of different technologically important materials in low dimensional electronics. The concept of DOS function is of fundamental importance for not only the characterization of semiconductor nanostructures but also in the study of the carrier transport in quantum effect devices. The acoustic mobility limited momentum relaxation time is inversely proportional to the respective DOS function of a particular semiconductor and the DOS function, in turn, is connected to the twenty five important transport topics of quantum effect devices namely the Landau Dia and Pauli's Para Magnetic Susceptibilities, the Einstein's Photoemission, the Einstein Relation, the Debye Screening Length, the Generalized Raman gain, the Normalized Hall coefficient, the Fowler-Nordheim Field Emission, the Gate Capacitance, the Thermoelectric Power, the Plasma Frequency, the Magneto-Thermal effect in Quantized Structures, the Activity coefficient, the Reflection coefficient, the Heat Capacity, the Faraday rotation, the Optical Effective Mass, the Carrier contribution to the elastic constants, the Diffusion coefficient of the minority carriers, the Nonlinear optical response, the Third order nonlinear optical susceptibility, the Righi-Leduc coefficient, the Electric Susceptibility, the Electric Susceptibility Mass, the Electron Diffusion Thermo-power and the Hydrostatic Piezo-resistance Coefficient respectively.This first-of-a-kind monograph investigates the DOS function and the aforementioned applications in quantized structures of tetragonal and non-linear optical, III-V, II-VI, Gallium Phosphide, Germanium, Platinum Antimonide, stressed, IV-VI, Lead Germanium Telluride, II-V, Zinc and Cadmium diphosphides and Bismuth Telluride respectively. We have also formulated the same and the allied physical properties of III-V, II-VI, IV-VI and HgTe/CdTe quantum well Heavily Doped (HD) superlattices with graded interfaces under magnetic quantization, III-V, II-VI, IV-VI and HgTe/CdTe HD effective mass superlattices under magnetic quantization, quantum confined effective mass superlattices and superlattices of HD optoelectronic materials with graded interfaces in addition to other quantized structures respectively.This book covers from elementary applications in the first chapter up to rather advanced investigations in the later chapters. We have suggested experimental determinations of the Einstein relation for the Diffusivity-Mobility ratio, the Debye screening length and Elastic Constants in various types of quantized structures under different physical conditions. This book contains 222 current open research problems which form an integral part of the text and are useful for both aspiring students and researchers. It is written for graduate / post graduate students, engineers and professionals in the fields of condensed matter physics, solid state sciences, materials science, nanoscience, nanotechnology and nanostructured materials in general and this book will be invaluable to all those researching in academic and industrial laboratories in the said cases worldwide.

  • av Kamakhya Prasad (Inst Of Engineering & Management Ghatak
    3 159,-

    The importance of the effective mass (EM) is already well known since the inception of solid-state physics and this first-of-its-kind monograph solely deals with the quantum effects in EM of heavily doped (HD) nanostructures. The materials considered are HD quantum confined nonlinear optical, III-V, II-VI, IV-VI, GaP, Ge, PtSb2, stressed materials, GaSb, Te, II-V, Bi2Te3, lead germanium telluride, zinc and cadmium diphosphides, and quantum confined III-V, II-VI, IV-VI, and HgTe/CdTe super-lattices with graded interfaces and effective mass super-lattices. The presence of intense light waves in optoelectronics and strong electric field in nano-devices change the band structure of semiconductors in fundamental ways, which have also been incorporated in the study of EM in HD quantized structures of optoelectronic compounds that control the studies of the HD quantum effect devices under strong fields. The importance of measurement of band gap in optoelectronic materials under intense external fields has also been discussed in this context. The influences of magnetic quantization, crossed electric and quantizing fields, electric field and light waves on the EM in HD semiconductors and super-lattices are discussed.The content of this book finds twenty-eight different applications in the arena of nano-science and nano-technology. This book contains 200 open research problems which form the integral part of the text and are useful for both PhD aspirants and researchers in the fields of condensed matter physics, materials science, solid state sciences, nano-science and technology and allied fields in addition to the graduate courses in semiconductor nanostructures. The book is written for post-graduate students, researchers, engineers and professionals in the fields of condensed matter physics, solid state sciences, materials science, nanoscience and technology and nanostructured materials in general.

  • av Kamakhya Prasad (Inst Of Engineering & Management Ghatak
    3 415,-

    This pioneering monograph solely deals with the Magneto Thermoelectric Power (MTP) in Heavily Doped (HD) Quantized Structures. The materials considered range from HD quantum confined nonlinear optical materials to HgTe/CdTe HD superlattices with graded interfaces and HD effective mass superlattices under magnetic quantization. An important concept of the measurement of the band gap in HD optoelectronic materials in the presence of external photo-excitation has been discussed in this perspective. The influences of magnetic quantization, crossed electric and quantizing fields, the intense electric field on the TPM in HD semiconductors and superlattices are also discussed. This book contains 200 open research problems which form the integral part of the text and are useful for both PhD aspirants and researchers in the various fields for which this particular series is dedicated.

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.