Marknadens största urval
Snabb leverans

Böcker av Joseph O'Rourke

Filter
Filter
Sortera efterSortera Populära
  • av Joseph O'Rourke
    905,-

    The essential introduction to discrete and computational geometrynow fully updated and expandedDiscrete and Computational Geometry bridges the theoretical world of discrete geometry with the applications-driven realm of computational geometry, offering a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. Beginning with polygons and ending with polyhedra, it explains how to capture the shape of data given by a set of points, from convex hulls and triangulations to Voronoi diagrams, geometric duality, chains, linkages, and alpha complexes. Connections to real-world applications are made throughout, and algorithms are presented independent of any programming language. Now fully updated and expanded, this richly illustrated textbook is an invaluable learning tool for students in mathematics, computer science, engineering, and physics.Now with new sections on duality and on computational topologyProject suggestions at the end of every chapterCovers traditional topics as well as new and advanced materialFeatures numerous full-color illustrations, exercises, and fully updated unsolved problemsUniquely designed for a one-semester classAccessible to college sophomores with minimal backgroundAlso suitable for more advanced studentsOnline solutions manual (available to instructors)

  • av Joseph O'Rourke
    1 609,-

    ^ the="" study="" of="" convex="" polyhedra="" in="" ordinary="" space="" is="" a="" central="" piece="" classical="" and="" modern="" geometry="" that="" has="" had="" significant="" impact="" on="" many="" areas="" mathematics="" also="" computer="" science.="" present="" book="" project="" by="" joseph="" o'rourke="" costin="" vîlcu="" brings="" together="" two="" important="" strands="" subject="" --="" combinatorics="" polyhedra, ="" intrinsic="" underlying="" surface.="" this="" leads="" to="" remarkable="" interplay="" concepts="" come="" life="" wide="" range="" very="" attractive="" topics="" concerning="" polyhedra.="" gets="" message="" across="" thetheory="" although="" with="" roots, ="" still="" much="" alive="" today="" continues="" be="" inspiration="" basis="" lot="" current="" research="" activity.="" work="" presented="" manuscript="" interesting="" applications="" discrete="" computational="" geometry, ="" as="" well="" other="" mathematics.="" treated="" detail="" include="" unfolding="" onto="" surfaces, ="" continuous="" flattening="" convexity="" theory="" minimal="" length="" enclosing="" polygons.="" along="" way, ="" open="" problems="" suitable="" for="" graduate="" students="" are="" raised, ="" both="" aThe focus of this monograph is converting--reshaping--one 3D convex polyhedron to another via an operation the authors call "tailoring." A convex polyhedron is a gem-like shape composed of flat facets, the focus of study since Plato and Euclid. The tailoring operation snips off a corner (a "vertex") of a polyhedron and sutures closed the hole. This is akin to Johannes Kepler's "vertex truncation," but differs in that the hole left by a truncated vertex is filled with new surface, whereas tailoring zips the hole closed. A powerful "gluing" theorem of A.D. Alexandrov from 1950 guarantees that, after closing the hole, the result is a new convex polyhedron. Given two convex polyhedra P, and Q inside P, repeated tailoringallows P to be reshaped to Q. Rescaling any Q to fit inside P, the result is universal: any P can be reshaped to any Q. This is one of the main theorems in Part I, with unexpected theoretical consequences.Part II carries out a systematic study of "vertex-merging," a technique that can be viewed as a type of inverse operation to tailoring. Here the start is P which is gradually enlarged as much as possible, by inserting new surface along slits. In a sense, repeated vertex-merging reshapes P to be closer to planarity. One endpoint of such a process leads to P being cut up and "pasted" inside a cylinder. Then rolling the cylinder on a plane achieves an unfolding of P. The underlying subtext is a question posed by Geoffrey Shephard in 1975 and already implied by drawings by Albrecht Dürer in the 15th century: whether every convex polyhedron can be unfolded to a planar "net." Toward this end, the authors initiate an exploration of convexity on convex polyhedra, a topic rarely studiedin the literature but with considerable promise for future development.This monograph uncovers new research directions and reveals connections among several, apparently distant, topics in geometry: Alexandrov's Gluing Theorem, shortest paths and cut loci, Cauchy's Arm Lemma, domes, quasigeodesics, convexity, and algorithms throughout. The interplay between these topics and the way the main ideas develop throughout the book could make the "journey" worthwhile for students and researchers in geometry, even if not directly interested in specific topics. Parts of the material will be of interest and accessible even to undergraduates. Although the proof difficulty varies from simple to quite intricate, with some proofs spanning several chapters, many examples and 125 figures help ease the exposition and illustrate the concepts.^>

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.