Marknadens största urval
Snabb leverans

Böcker av James V. (University of California Candy

Filter
Filter
Sortera efterSortera Populära
  • - An Applied Subspace Identification Approach
    av James V. (University of California Candy
    1 725,-

    A BRIDGE BETWEEN THE APPLICATION OF SUBSPACE-BASED METHODS FOR PARAMETER ESTIMATION IN SIGNAL PROCESSING AND SUBSPACE-BASED SYSTEM IDENTIFICATION IN CONTROL SYSTEMS Model-Based Processing: An Applied Subspace Identification Approach provides expert insight on developing models for designing model-based signal processors (MBSP) employing subspace identification techniques to achieve model-based identification (MBID) and enables readers to evaluate overall performance using validation and statistical analysis methods. Focusing on subspace approaches to system identification problems, this book teaches readers to identify models quickly and incorporate them into various processing problems including state estimation, tracking, detection, classification, controls, communications, and other applications that require reliable models that can be adapted to dynamic environments. The extraction of a model from data is vital to numerous applications, from the detection of submarines to determining the epicenter of an earthquake to controlling an autonomous vehicles--all requiring a fundamental understanding of their underlying processes and measurement instrumentation. Emphasizing real-world solutions to a variety of model development problems, this text demonstrates how model-based subspace system identification enables the extraction of a model from measured data sequences from simple time series polynomials to complex constructs of parametrically adaptive, nonlinear distributed systems. In addition, this resource features: Kalman filtering for linear, linearized, and nonlinear systems; modern unscented Kalman filters; as well as Bayesian particle filters Practical processor designs including comprehensive methods of performance analysis Provides a link between model development and practical applications in model-based signal processing Offers in-depth examination of the subspace approach that applies subspace algorithms to synthesized examples and actual applications Enables readers to bridge the gap from statistical signal processing to subspace identification Includes appendices, problem sets, case studies, examples, and notes for MATLAB Model-Based Processing: An Applied Subspace Identification Approach is essential reading for advanced undergraduate and graduate students of engineering and science as well as engineers working in industry and academia.

  • - Classical, Modern, and Particle Filtering Methods
    av James V. (University of California Candy
    1 685,-

    Presents the Bayesian approach to statistical signal processing for a variety of useful model sets This book aims to give readers a unified Bayesian treatment starting from the basics (Bayes' rule) to the more advanced (Monte Carlo sampling), evolving to the next-generation model-based techniques (sequential Monte Carlo sampling). This next edition incorporates a new chapter on "Sequential Bayesian Detection," a new section on "Ensemble Kalman Filters" as well as an expansion of Case Studies that detail Bayesian solutions for a variety of applications. These studies illustrate Bayesian approaches to real-world problems incorporating detailed particle filter designs, adaptive particle filters and sequential Bayesian detectors. In addition to these major developments a variety of sections are expanded to ``fill-in-the gaps" of the first edition. Here metrics for particle filter (PF) designs with emphasis on classical ``sanity testing" lead to ensemble techniques as a basic requirement for performance analysis. The expansion of information theoretic metrics and their application to PF designs is fully developed and applied. These expansions of the book have been updated to provide a more cohesive discussion of Bayesian processing with examples and applications enabling the comprehension of alternative approaches to solving estimation/detection problems. The second edition of Bayesian Signal Processing features: "Classical" Kalman filtering for linear, linearized, and nonlinear systems; "modern" unscented and ensemble Kalman filters; and the "next-generation" Bayesian particle filters Sequential Bayesian detection techniques incorporating model-based schemes for a variety of real-world problems Practical Bayesian processor designs including comprehensive methods of performance analysis ranging from simple sanity testing and ensemble techniques to sophisticated information metrics New case studies on adaptive particle filtering and sequential Bayesian detection are covered detailing more Bayesian approaches to applied problem solving MATLAB(R) notes at the end of each chapter help readers solve complex problems using readily available software commands and point out other software packages available Problem sets to test readers' knowledge and help them put their new skills into practice Bayesian Signal Processing, Second Edition is written for all students, scientists, and engineers who investigate and apply signal processing to their everyday problems.

  • av James V. (University of California Candy
    2 439,-

    Model-Based Signal Processing develops the "model-based approach" to signal processing for a variety of useful model sets including the popularly termed "physics-based" models. It presents a unique viewpoint of signal processing from the model-based perspective.

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.