Marknadens största urval
Snabb leverans

Böcker i Cognitive Data Science in Sustainable Computing-serien

Filter
Filter
Sortera efterSortera Serieföljd
  •  
    1 299,-

    Intelligent IoT Systems in Personalized Health Care delivers a significant forum for the technical advancement of IoMT learning in parallel computing environments across biomedical engineering diversified domains and its applications. Pursuing an interdisciplinary approach, the book focuses on methods used to identify and acquire valid, potentially useful knowledge sources. The book presents novel, in-depth, fundamental research contributions from a methodological/application perspective to help readers understand the fusion of AI with IoT and its capabilities in solving a diverse range of problems for biomedical engineering and its real-world personalized health care applications. The book is well suited for researchers exploring the significance of IoT based architecture to perform predictive analytics of user activities in sustainable health.Presents novel, in-depth, fundamental research contributions from a methodological/application perspective to help readers understand the fusion of AI with IoTIllustrates state-of-the-art developments in new theories and applications of IoMT techniques as applied to parallel computing environments in biomedical engineering systemsPresents concepts and technologies successfully used in the implementation of today''s intelligent data-centric IoT systems and Edge-Cloud-Big data

  • av Dioneia (Postdoctoral researcher in the Department of Computing and Mathematics Motta Monte-Serrat
    1 429,-

    The Natural Language for Artificial Intelligence presents the biological and logical structure typical of human language in its dynamic mediating process between reality and the human mind. The book explains linguistic functioning in the dynamic process of human cognition when forming meaning. After that, an approach to artificial intelligence (AI) is outlined, which works with a more restricted concept of natural language that leads to flaws and ambiguities. Subsequently, the characteristics of natural language and patterns of how it behaves in different branches of science are revealed to indicate ways to improve the development of AI in specific fields of science. A brief description of the universal structure of language is also presented as an algorithmic model to be followed in the development of AI. Since AI aims to imitate the process of the human mind, the book shows how the cross-fertilization between natural language and AI should be done using the logical-axiomatic structure of natural language adjusted to the logical-mathematical processes of the machine.Presents a comprehensive approach to natural language and its inherent and complex dynamicsDevelops language content as the next frontier, identifying the universal structure of language as a common structure that appears in both AI and cognitive computingExplains the standard structure present in cognition and AI, making them interchangeableOffers examples of the application of the universal language model in image analysis and conventional language

  • - Principles and Practices
     
    1 349,-

  • - Concepts, Algorithms and Applications
     
    1 309,-

    Machine Learning for Biometrics: Concepts, Algorithms and Applications highlights the fundamental concepts of machine learning, processing and analyzing data from biometrics and provides a review of intelligent and cognitive learning tools which can be adopted in this direction. Each chapter of the volume is supported by real-life case studies, illustrative examples and video demonstrations. The book elucidates various biometric concepts, algorithms and applications with machine intelligence solutions, providing guidance on best practices for new technologies such as e-health solutions, Data science, Cloud computing, and Internet of Things, etc. In each section, different machine learning concepts and algorithms are used, such as different object detection techniques, image enhancement techniques, both global and local feature extraction techniques, and classifiers those are commonly used data science techniques. These biometrics techniques can be used as tools in Cloud computing, Mobile computing, IOT based applications, and e-health care systems for secure login, device access control, personal recognition and surveillance.

  •  
    1 309,-

    Cognitive Systems and Signal Processing in Image Processing presents different frameworks and applications of cognitive signal processing methods in image processing. This book provides an overview of recent applications in image processing by cognitive signal processing methods in the context of Big Data and Cognitive AI. It presents the amalgamation of cognitive systems and signal processing in the context of image processing approaches in solving various real-word application domains. This book reports the latest progress in cognitive big data and sustainable computing. Various real-time case studies and implemented works are discussed for better understanding and more clarity to readers. The combined model of cognitive data intelligence with learning methods can be used to analyze emerging patterns, spot business opportunities, and take care of critical process-centric issues for computer vision in real-time.

  •  
    1 325,-

    Artificial Intelligence and Data Science in Environmental Sensing provides state-of-the-art information on the inexpensive mass-produced sensors that are used as inputs to artificial intelligence systems. The book discusses the advances of AI and Machine Learning technologies in material design for environmental areas. It is an excellent resource for researchers and professionals who work in the field of data processing, artificial intelligence sensors and environmental applications.

  • av Bharat Bhushan, Sudhir Kumar Sharma & Muzafer Saracevic
    1 505,-

    Blockchain Technology Solutions for the Security of IoT-Based Healthcare Systems explores the various benefits and challenges associated with the integration of blockchain with IoT healthcare systems, focusing on designing cognitive-embedded data technologies to aid better decision-making, processing and analysis of large amounts of data collected through IoT. This book series targets the adaptation of decision-making approaches under cognitive computing paradigms to demonstrate how the proposed procedures, as well as big data and Internet of Things (IoT) problems can be handled in practice. Current Internet of Things (IoT) based healthcare systems are incapable of sharing data between platforms in an efficient manner and holding them securely at the logical and physical level. To this end, blockchain technology guarantees a fully autonomous and secure ecosystem by exploiting the combined advantages of smart contracts and global consensus. However, incorporating blockchain technology in IoT healthcare systems is not easy. Centralized networks in their current capacity will be incapable to meet the data storage demands of the incoming surge of IoT based healthcare wearables.

  • av Florentin Smarandache
    1 505,-

    Cognitive Intelligence with Neutrosophic Statistics in Bioinformatics investigates and presents the many applications that have arisen in the last ten years using neutrosophic statistics in bioinformatics, medicine, agriculture and cognitive science. This book will be very useful to the scientific community, appealing to audiences interested in fuzzy, vague concepts from which uncertain data are collected, including academic researchers, practicing engineers and graduate students. Neutrosophic statistics is a generalization of classical statistics. In classical statistics, the data is known, formed by crisp numbers. In comparison, data in neutrosophic statistics has some indeterminacy. This data may be ambiguous, vague, imprecise, incomplete, and even unknown. Neutrosophic statistics refers to a set of data, such that the data or a part of it are indeterminate in some degree, and to methods used to analyze the data.

  •  
    1 309,-

    Edge-of-Things in Personalized Healthcare Support Systems discusses and explores state-of-the-art technology developments in storage and sharing of personal healthcare records in a secure manner that is globally distributed to incorporate best healthcare practices. The book presents research into the identification of specialization and expertise among healthcare professionals, the sharing of records over the cloud, access controls and rights of shared documents, document privacy, as well as edge computing techniques which help to identify causes and develop treatments for human disease. The book aims to advance personal healthcare, medical diagnosis, and treatment by applying IoT, cloud, and edge computing technologies in association with effective data analytics. Provides an in-depth analysis of how to model and design applications for state-of-the-art healthcare systems Discusses and explores the social impact of the intertwined use of emerging IT technologies for healthcare Covers system design and software building principles for healthcare using IoT, cloud, and edge computing technologies with the support of effective and efficient data analytics strategies Explores the latest algorithms using machine and deep learning in the areas of cloud, edge computing, IoT, and healthcare analytics

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.