Marknadens största urval
Snabb leverans

Böcker i Chapman & Hall/CRC Monographs on Statistics and Applied Probability-serien

Filter
Filter
Sortera efterSortera Serieföljd
  • av Jose E. (Universidad de Extremadura Chacon
    685

    Kernel smoothing has greatly evolved since its inception to become an essential methodology in the Data Science tool kit for the 21st century. Its widespread adoption is due to its fundamental role for multivariate exploratory data analysis, as well as the crucial role it plays in composite solutions to complex data challenges.

  • av Yoshio Takane
    735

    This book shows how constrained principal component analysis (CPCA) offers a unified framework for regression techniques and PCA. Keeping the use of complicated iterative methods to a minimum, the book includes implementation details and many real application examples. It also offers material for methodologically oriented readers interested in d

  • - Fitting Circles and Lines by Least Squares
    av Nikolai (University of Alabama at Birmingham Chernov
    729

    Exploring the recent achievements that have occurred since the mid-1990s, this book explains how to use modern algorithms to fit geometric contours to observed data in image processing and computer vision. The author covers all facets-geometric, statistical, and computational-of the methods. He looks at how the numerical algorithms relate to one

  •  
    2 779

    This volume discusses an important area of statistics and highlights the most important statistical advances. It is divided into four sections: statistics in the life and medical sciences, business and social science, the physical sciences and engineering, and theory and methods of statistics.

  • - A Marginal Modeling Approach
    av Ross L. Prentice
    745,-

    Though much has been written on multivariate failure time data analysis methods, a unified approach to this topic has yet to be communicated. This book aims to fill that gap through a novel focus on marginal hazard rates and cross ratio modeling. Readers will find the content useful for instruction, for application in collaborative research and

  • - Methods and Applications with R
    av Bing Li
    745,-

    Sufficient dimension reduction was first introduced in the early 90's as a set of graphical and diagnostic tools for regression with many predictors. Over the past two decades or so it has developed into a powerful theory and technique for handling high-dimensional data. This book will introduce the main results and important techniques in this

  • - Reasoning with Uncertainty
    av Ryan (University of Illinois at Chicago Martin
    729

    This book introduces the authors' recently developed approach to inference: the inferential model (IM) framework. This logical framework for exact probabilistic inference does not require the user to input prior information. The book covers the foundational motivations for this new approach, the basic theory behind its calibration properties, ma

  • - With Applications
    av Vidyadhar S. Mandrekar
    729

    This monograph presents Hilbert space methods to study deep analytic properties connecting probabilistic notions. In particular, the authors study Gaussian random fields using reproducing kernel Hilbert spaces (RKHSs). They explain how covariances are related to RKHSs and examine the Bayes' formula, the filtering and analytic problem related to

  • - The Lasso and Generalizations
    av Trevor Hastie
    625

    In this age of big data, the number of features measured on a person or object can be large and might be larger than the number of observations. This book shows how the sparsity assumption allows us to tackle these problems and extract useful and reproducible patterns from big datasets. The authors cover the lasso for linear regression, generali

  • av Barry C. (University of California Arnold
    685

    This book provides broad, up-to-date coverage of the Pareto model and its extensions. This edition expands several chapters to accommodate recent results and reflect the increased use of more computer-intensive inference procedures. It includes new material on multivariate inequality and new discussions of bivariate and multivariate income and s

  • - Hypothesis Testing and Changepoint Detection
    av Alexander Tartakovsky
    749,-

    This book covers the theoretical developments and applications of sequential hypothesis testing and sequential quickest changepoint detection in a wide range of engineering and environmental domains. It reviews recent accomplishments in hypothesis testing and changepoint detection both in decision-theoretic (Bayesian) and non-decision-theoretic

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.