Marknadens största urval
Snabb leverans

Böcker i Chapman & Hall/CRC Monographs on Statistics and Applied Probability-serien

Filter
Filter
Sortera efterSortera Serieföljd
  • - Methods and Applications in Clinical Management and Public Health
    av Ruth M. Pfeiffer
    1 025

    This book addresses the development, evaluation, and application of models of absolute risk- the probability of developing a specific disease over a specified time interval in the presence of competing causes of mortality. It discusses the development of appropriate statistical methods for estimating and applying absolute risk.

  • av Pierre (School of Mathematics and Statistics University of New South Wales, Sydney Australia & INRIA Bordeaux-Sud Ouest Research Center Del Moral
    799,-

    This book presents the first comprehensive and modern mathematical treatment of these mean field particle models, including refined convergence analysis on nonlinear Markov chain models. It also covers applications related to parameter estimation in hidden Markov chain models, stochastic optimization, nonlinear filtering and multiple target tracking, stochastic optimization, calibration and uncertainty propagations in numerical codes, rare event simulation, financial mathematics, and free energy and quasi-invariant measures arising in computational physics and population biology.

  • - Theory, Applications, and Open Problems
    av Jiming Jiang
    1 455

  • av Wei (University of Southampton Liu
    1 135

  • - With R Examples
    av Sam Efromovich
    745 - 1 339

    This book presents a systematic and unified approach for modern nonparametric treatment of missing and modified data via examples of density and hazard rate estimation, nonparametric regression, filtering signals, and time series analysis. All basic types of missing at random and not at random, biasing, truncation, censoring, and measurement errors are discussed, and their treatment is explained. Ten chapters of the book cover basic cases of direct data, biased data, nondestructive and destructive missing, survival data modified by truncation and censoring, missing survival data, stationary and nonstationary time series and processes, and ill-posed modifications. The coverage is suitable for self-study or a one-semester course for graduate students with a prerequisite of a standard course in introductory probability. Exercises of various levels of difficulty will be helpful for the instructor and self-study. The book is primarily about practically important small samples. It explains when consistent estimation is possible, and why in some cases missing data should be ignored and why others must be considered. If missing or data modification makes consistent estimation impossible, then the author explains what type of action is needed to restore the lost information. The book contains more than a hundred figures with simulated data that explain virtually every setting, claim, and development. The companion R software package allows the reader to verify, reproduce and modify every simulation and used estimators. This makes the material fully transparent and allows one to study it interactively. Sam Efromovich is the Endowed Professor of Mathematical Sciences and the Head of the Actuarial Program at the University of Texas at Dallas. He is well known for his work on the theory and application of nonparametric curve estimation and is the author of Nonparametric Curve Estimation: Methods, Theory, and Applications. Professor Sam Efromovich is a Fellow of the Institute of Mathematical Statistics and the American Statistical Association.

  • av Harry (Rutgers University) Crane
    1 835

    Probabilistic Foundations of Statistical Network Analysis presents a fresh and insightful perspective on the fundamental tenets and major challenges of modern network analysis. Its lucid exposition provides necessary background for understanding the essential ideas behind exchangeable and dynamic network models, network sampling, and network statistics such as sparsity and power law, all of which play a central role in contemporary data science and machine learning applications. The book rewards readers with a clear and intuitive understanding of the subtle interplay between basic principles of statistical inference, empirical properties of network data, and technical concepts from probability theory. Its mathematically rigorous, yet non-technical, exposition makes the book accessible to professional data scientists, statisticians, and computer scientists as well as practitioners and researchers in substantive fields. Newcomers and non-quantitative researchers will find its conceptual approach invaluable for developing intuition about technical ideas from statistics and probability, while experts and graduate students will find the book a handy reference for a wide range of new topics, including edge exchangeability, relative exchangeability, graphon and graphex models, and graph-valued Levy process and rewiring models for dynamic networks. The author''s incisive commentary supplements these core concepts, challenging the reader to push beyond the current limitations of this emerging discipline. With an approachable exposition and more than 50 open research problems and exercises with solutions, this book is ideal for advanced undergraduate and graduate students interested in modern network analysis, data science, machine learning, and statistics. Harry Crane is Associate Professor and Co-Director of the Graduate Program in Statistics and Biostatistics and an Associate Member of the Graduate Faculty in Philosophy at Rutgers University. Professor Crane''s research interests cover a range of mathematical and applied topics in network science, probability theory, statistical inference, and mathematical logic. In addition to his technical work on edge and relational exchangeability, relative exchangeability, and graph-valued Markov processes, Prof. Crane''s methods have been applied to domain-specific cybersecurity and counterterrorism problems at the Foreign Policy Research Institute and RAND''s Project AIR FORCE. ? ? ? ? ? ?

  • av Harry (Rutgers University) Crane
    745,-

    Probabilistic Foundations of Statistical Network Analysis presents a fresh and insightful perspective on the fundamental tenets and major challenges of modern network analysis. Its lucid exposition provides necessary background for understanding the essential ideas behind exchangeable and dynamic network models, network sampling, and network statistics such as sparsity and power law, all of which play a central role in contemporary data science and machine learning applications. The book rewards readers with a clear and intuitive understanding of the subtle interplay between basic principles of statistical inference, empirical properties of network data, and technical concepts from probability theory. Its mathematically rigorous, yet non-technical, exposition makes the book accessible to professional data scientists, statisticians, and computer scientists as well as practitioners and researchers in substantive fields. Newcomers and non-quantitative researchers will find its conceptual approach invaluable for developing intuition about technical ideas from statistics and probability, while experts and graduate students will find the book a handy reference for a wide range of new topics, including edge exchangeability, relative exchangeability, graphon and graphex models, and graph-valued Levy process and rewiring models for dynamic networks. The author''s incisive commentary supplements these core concepts, challenging the reader to push beyond the current limitations of this emerging discipline. With an approachable exposition and more than 50 open research problems and exercises with solutions, this book is ideal for advanced undergraduate and graduate students interested in modern network analysis, data science, machine learning, and statistics. Harry Crane is Associate Professor and Co-Director of the Graduate Program in Statistics and Biostatistics and an Associate Member of the Graduate Faculty in Philosophy at Rutgers University. Professor Crane''s research interests cover a range of mathematical and applied topics in network science, probability theory, statistical inference, and mathematical logic. In addition to his technical work on edge and relational exchangeability, relative exchangeability, and graph-valued Markov processes, Prof. Crane''s methods have been applied to domain-specific cybersecurity and counterterrorism problems at the Foreign Policy Research Institute and RAND''s Project AIR FORCE.            

  • - With Implementation in R
    av Colin O. Wu
    1 935

  • - A Marginal Modeling Approach
    av Ross L. Prentice
    1 255

    Though much has been written on multivariate failure time data analysis methods, a unified approach to this topic has yet to be communicated. This book aims to fill that gap through a novel focus on marginal hazard rates and cross ratio modeling. Readers will find the content useful for instruction, for application in collaborative research and as a source of novel research concepts. Many of the illustrations are from population disease studies which should interest epidemiologists and population scientists.

  • - Semiparametric and Nonparametric Methods
    av Jiti Gao
    915

  • av D.R. Cox
    949

    The components of variance is a notion essential to statisticians and quantitative research scientists working in a variety of fields, including the biological, genetic, health, industrial, and psychological sciences. Co-authored by Sir David Cox, the pre-eminent statistician in the field, this book provides in-depth discussions that set forth the essential principles of the subject. It focuses on developing the models that form the basis for detailed analyses as well as on the statistical techniques themselves. The authors include a variety of examples from areas such as clinical trial design, plant and animal breeding, industrial design, and psychometrics.

  • - Modeling and Statistical Analysis
    av Vilijandas Bagdonavicius
    925

    Authors Badonavicius and Nikulin have developed a large and important class of survival analysis models that generalize most of the existing models. In a unified, systematic presentation that does not get bogged down in technical details, this monograph fully examines those models and explores areas of accelerated life testing usually only touched upon in the literature. In addition to the classical results, the authors devote considerable attention to models with time-varying explanatory variables and to methods of semiparametric estimation. The authors include goodness-of-fit tests for the most important models. This book is valuable as both a high-level textbook and as a professional reference.

  • av Fabio Spizzichino
    915

    Bayesian methods in reliability cannot be fully utilized without understanding the essential differences that exist between frequentist probability and subjective probability. Switching from the frequentist to the subjective approach requires that some fundamental concepts be re-thought. This text details those differences and clarifies aspects of subjective probability that have a direct influence on modeling and drawing inference from failure and survival data. In particular, within a framework of Bayesian theory, the author considers the effects of different levels of information in the analysis of the phenomena of positive and negative aging.

  • av University of London, London, UK) Hand, m.fl.
    919 - 2 375

  • av Arup Bose & Monika Bhattacharjee
    729 - 1 695

  • av Christophe (Paris Sud University Giraud
    1 189,-

    This book preserves the philosophy of the first edition: to be a concise guide for students and researchers discovering the area and interested in the mathematics involved. The main concepts and ideas are presented in simple settings, avoiding thereby unessential technicalities.

  • av J. S. Marron
    1 539

    Object Oriented Data Analysis (OODA) provides a useful general framework for the consideration of many types of Complex Data. It is deliberately intended to be particularly useful in the analysis of data in complicated situations which are typically not easily represented as an unconstrained matrix of numbers.

  • av Ardo van den Hout
    745

    Multi-State Survival Models for Interval-Censored Data introduces methods to describe stochastic processes that consist of transitions between states over time. It is targeted at researchers in medical statistics, epidemiology, demography, and social statistics. One of the applications in the book is a three-state process for dementia and survival in the older population. This process is described by an illness-death model with a dementia-free state, a dementia state, and a dead state. Statistical modelling of a multi-state process can investigate potential associations between the risk of moving to the next state and variables such as age, gender, or education. A model can also be used to predict the multi-state process.The methods are for longitudinal data subject to interval censoring. Depending on the definition of a state, it is possible that the time of the transition into a state is not observed exactly. However, when longitudinal data are available the transition time may be known to lie in the time interval defined by two successive observations. Such an interval-censored observation scheme can be taken into account in the statistical inference.Multi-state modelling is an elegant combination of statistical inference and the theory of stochastic processes. Multi-State Survival Models for Interval-Censored Data shows that the statistical modelling is versatile and allows for a wide range of applications.

  • av Trevor Hastie, Robert Tibshirani & Martin (Department of Statistics Wainwright
    1 539

  • av Gabor J. Szekely
    1 349

    Energy statistics are functions of distances between statistical observations in metric spaces. The authors hope this book will spark the interest of most statisticians who so far have not explored E-statistics and would like to apply these new methods using R.

  • - Unified Analysis via H-likelihood, Second Edition
    av Youngjo Lee
    745,-

    This is the second edition of a monograph on generalized linear models with random effects that extends the classic work of McCullagh and Nelder. It has been thoroughly updated, with around 80 pages added, including new material on the extended likelihood approach that strengthens the theoretical basis of the methodology, new developments in var

  • - Theory, Applications, and Open Problems
    av Jiming Jiang
    729

    Large sample techniques are fundamental to all fields of statistics. Mixed effects models, including linear mixed models, generalized linear mixed models, non-linear mixed effects models, and non-parametric mixed effects models are complex models, yet, these models are extensively used in practice. This monograph provides a comprehensive account

  • av Michael (University of Toronto Evans
    729

    This book provides an overview of recent work on developing a theory of statistical inference based on measuring statistical evidence. It attempts to establish a gold standard for how a statistical analysis should proceed. The book illustrates relative belief theory using many examples and describes the strengths and weaknesses of the theory. Th

  • av Granville (Lancaster University Tunnicliffe Wilson
    785,-

    This book addresses the issues that arise and the methodology that can be applied when the dependence between time series is described and modeled. It shows how to draw meaningful, applicable, and statistically valid conclusions from multivariate (or vector) time series data. The book presents several extensions to the standard autoregressive mo

  • - Exploring the Limits of Limited Data
    av Paul (University of British Columbia Gustafson
    785,-

    This book shows how the Bayesian approach to inference is applicable to partially identified models (PIMs) and examines the performance of Bayesian procedures in partially identified contexts. Drawing on his many years of research in this area, the author presents a thorough overview of the statistical theory, properties, and applications of PIM

  • - Theory, Applications and Software
    av Jose (Universidad Complutense de Madrid Casals
    745

    Exploring the advantages of the state-space approach, this book presents numerous computational procedures that can be applied to a previously specified linear model in state-space form. It discusses model estimation and signal extraction; describes many procedures to combine, decompose, aggregate, and disaggregate a state-space form; and covers

  • - With Implementation in R
    av Colin O. Wu
    865

    Nonparametric Models for Longitudinal Data with Implementations in R presents a comprehensive summary of major advances in nonparametric models and smoothing methods with longitudinal data. It covers methods, theories, and applications that are particularly useful for biomedical studies in the era of big data and precisio

  • av Richard J Cook
    735

    This book will describe a variety of statistical models useful for the analysis of data arising from life history processes. Particular attention will be paid to models useful for the study of chronic diseases to better understand the dynamics of the disease process, the effects of fixed and time-varying covariates, and the use of models for pre

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.